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AB STRACT

An elementary theory is developed for the supersonic flow around

oscillating slender pointed bodies of revolution which accounts for

body-shape and Mach-number effects. The frequency _ is supposed to be

small in comparison to U/L (U = free-stream velocity, L = body-length).

The powers of m higher than one are neglected. By properly expanding

Dorrance's solution with respect to the thickness ratio, an expression

for the velocity-potential i8 obtained which is much handier for
numerical evaluation. This solution is shown to be the low-frequency

case of Adams-Sears' not-so-slender-body theory that, until now, could

only be derived by Fourier or Laplace transform techniques.
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DEFINITION OF SYMBOLS

Definition

free-stream speed of sound

Euler's constant = 0.5772

doublet-distribution

Laplace-transform of F(x)

Laplace transform operator

free-stream Mach number

Laplace parameter

body radius

time

free-stream velocity

a system of cylindrical coordinates with x-axis in direction

of free stream and with origin located at mean position of

body nose (Fig. I).

amplitude of downward displacement of body center line for
harmonic motion

=_M 2 - I'

= cot2_ . p2 + 2 i_M _2
--_-p - c--_

= cot20_ • _ + 2--c _xx "--c2

= C cot_

frequency of oscillation

_U
= cm cotmC_

iv
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DEFINITION OF SYMBOLS (Cont'd)

Definition

perturbation velocity potential for an arbitrary

time-dependent motion

amplitude of perturbation potential for harmonic

motion

Laplace transform of @(x, r, 8).

Free-Stream

Velocity U

r

i II /

._ ?"% L X

_../ Z (x) e i_t

Z.-- Camber Line

FIG. i. CYLINDRICAL COORDINATES
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SUMMARY

An elementary theory is developed for the supersonic flow around

oscillating slender pointed bodies of revolution which accounts for

body-shape and Mach-number effects. The frequency _0 is supposed to be

small in comparison to U/L (U = free-stream velocity, L = body-length).

The powers of _0 higher than one are neglected. By properly expanding

Dorrancefs solution with respect to the thickness ratio, an expression

for the velocity-potential is obtained which is much handier for

numerical evaluation. This solution is shown to be the low-frequency

case of Adams-Sears' not-so-slender-body theory that, until now, could

only be derived by Fourier or Laplace transform techniques.

INTRODUCTION

Current launch-vehicle developments have initiated increased

interest in the prediction of aerodynamic forces on oscillating and/or

deforming bodies of revolution because these forces are needed as input

to both the dynamic stability problem and the aero-servo-elastic problem.

Of special importance is the maximum dynamic pressure part of the ascent

which is generally the lower supersonic part of the flight.

A theory readily available in the literature for determining the

aerodynamic forces in this speed-range is the well-known Munk-Jones

apparent-mass theory [i, 2] which was generalized to unsteady flow by

Garrick [3] and Miles [4]. This theory - taking into account the cross-

flow only - gives no Mach-number dependence and is strictly applicable

only to bodies of vanishingly small thickness. In recent years, several

attempts have therefore been made for more rigorous theories applicable

to not-so-slender bodies. We mention:

a. the theory of W. H. Dorrance [5] and extensions of his theory
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to higher frequencies by D. L. Lansing [6] and R. B. Bond
and B. B. Packard [7].

b. the "not-so-slender-body theory" of Adams-Searsas applied to
unsteady supersonic flow by G. Zartarian and H. Ashley [8].

Weshould point out, however, that several other (essentially purely
numerical) methods are possible [9, I0, ii, 12, 13, 14, 15, 16, 17]
which mayyield good agreementwith experiment.

In this paper a quite elementary approach is derived which extends
F. Keune's techniques for low aspect ratio bodies at zero angle of
attack to unsteady flow and shows at the sametime the essential equiva-
lence of Dorrance's solution and the Adams-Searstheory.

DORRANCE'SMETHODOF SOLUTION

Assumingharmonic time-dependence

#(x, r e, t) = qD(x, r, e) • e i6ot

the linearized potential equation for pulsating flow reads

I i6oM c02
c°t2fz " _0xx- q°rr " r qDr= " 2 -- CPx+c c (l)

A Solution of this equation is the supersonic point-source

q_z(x, r) -- i -i_(x- _)- 2_---_e • cos K R (2)

where

R = ,J(x- cot  , r

(e.g., I. E. Garrick, "Nonsteady Wing Characteristics," Vol. VII, High

Speed Aerodynamics and Jet Propulsion, Princeton 1957, p. 677,

equations 4-29).



The source-potential is obtained by distributing such sources
along the x-axis

x-cotC_,r

o

F(_) cos[KJ(_x- _)2- cot2_, r2 II e

J(_. _)2. cot2a . r _'

-iu(x-_)a_"

(3)

From this solution the doublet-potential of the oscillating body of

revolution can be derived by means of the operation

8_s(X, r)
@(x, r, O) = cos 8 • 8r ' (4)

satisfying the equation

I i
coten • _xx " _rr " _ _r " 7 2 _se

= - 2 iu_M _2
-7- _x + _ _. (5)

Laplace-transformation with respect to x

co

(p, r) - 7e "px • _(x, r) dx

o

(6)

transforms equation (i) into

_rr + i -_r - _2_ = 0 (7)

where

Re = cot2(_ . p2 + 2 i0JM _02
-7-p -_. (7a)



4

A solution of equation (7) with the proper behavior at infinity is

_s(p , r) = I" 2-_ _(p) " Ko(_r) (8)

F(p) = L[F(x)]. (9)

Expanding Ko(_r ) in terms of _r and inserting into the Laplace-

transformed equation (4) gives

_2r r
_(p r, O) = cos 8 _(p) i her (C + in _) - -- In +

' 2_ " r 2 2

_2 r

4 • + 0CA4r s in _r)].
(I0)

In a first approximation we retain only the first term of this

expansion, thus obtaining after inversion

cos @

_(x, r, e) = 2_cr F(x). (ii)

This is the well-known slender-body solution. For a body whose axis

performs harmonic oscillations Z(x)e i_t, the boundary-condition reads

[ + !lira = - cos e • U _x
r -_ R(x)

= - cos e • w(x). (12)

The unknown doublet-distribution then is determined from

_r F(x)
lim = - 2_Rm(x) cos @ = - cos @ • w(x).
r _ R(x)

(13)



Dorrance inserts this doublet-distribution back into equation (4) and
restricts his solution to small frequencies, i.e., expandswith
respect to m, keeping only first-order terms. His solution therefore
reads

q)(x, r, 8) = cos 8

x-r cot_

o

r(_) [i - i_(x-_)] d_],

_(x- )2 r2cot2(X '
J

(14)

which is evaluated by means of the substitution

= x - cot_ • r • cosh u.

J. W. Miles criticized this procedure in Reference 19 as inconsistent

and unnecessarily complicated.

If higher-order terms are sought, going beyond the slender-body

solution, the Adams-Sears procedure [18] provides a consistent extension.

It was applied to the oscillating body of revolution by Ashley and

Zartarian [8]. We will therefore give a short recapitulation of the

Adams-Sears theory.

THE ADAMS-SEARS NOT-SO-SLENDER-BODY THEORY

In seeking a closer approximation, the higher-order terms of

equation (I0) have to be retained

_(p, r, O) = cos 0 _(p) I I k2r2_ r 2 (C + in k) %er in r %_r_"-i- ' (io)

and inversion gives after applying the Faltung theorem (e.g., Ref. 20,

p. 124)



_(x, r, e) cos2rrr@F(x) cos2_@ I-_{ F(X) In cotCz +

X

- _-xx F(_) in (x - _) d +

O

x it0(x-_)

rA c (M+I)
-_-- 2 - e - e

O

i_0(x-_)

c(M-I) ) xF_--_ d_ + (15)

where

7
r r r !

- (_ In 7) AF(x) + _ fLF(x)J,

_2 i_OM _ _2
A = cot2C_ _--_ + 2 -- - --

C _X C _ 'ox- (16)

We are again interested in the small-frequency case and obtain from

equation (15)

c°s-----!F(x) + c°s----!e_(x, r, 8) = 2_r 4_ r c°teCZ [F"(x) ( In c°tc_ " r })2x +

X

x-g .j
O

(17)

+ 2-7_ffce r cos @ ' F'(x) in
cot(Z • r

2x

x

7" " ]+ (x) - (_) d_ .
x -

0



ELEMENTARY TRANSFORMATION OF DORRANCE'S SOLUTION

FOR THE SLOWLY OSCILLATING POINTED BODY OF REVOLUTION

We will now demonstrate that the "higher-order terms" can be

found by quite elementary steps. This was first shown by F. Keune for

bodies of small aspect ratio at zero angle of attack [21]. We will

extend his procedure to the case of the oscillating body of revolution.

For this purpose, we separate Dorrance's solution into a steady-

state part

x-r cot_

°°_° _ - r_ _,.i_._. oot_. _
o

being the potential of a body of revolution at angle of attack and

into an unsteady part

x-r cota

4_(x-_12 . cot2a • r _' •
o

(19)

For the steady-state part we may immediately make use of Keune's

developments for bodies at zero angle of attack. It is shown in

Ref. 21 that in this case the velocity-potentlal may be written

x-r cot(_

%(x, r) - -12,, f
o

F_(_) d_

4"(x._)2- cot_a • r 2'
. go1 +_1 +.

where

x

(p[0] = F(X) In r + F(x) in cot_- f F'(_) In [2(x-_)] d_2_ 2_

0

(20)

(20a)



the first term being the crossflow, the second and third term
representing the spatial influence, and

_II] _ F"(x) [In (r cot_) - I] +
cota_ r e8_

x

c°t2_8_ _e 5F 'r2 x_-_ (_) in [2(x-_)] d_.

0

(20b)

Inserting these expressions into equation (18) and performing the

differentiation with respect to r gives for the steady-state part then

cos (9

x-r cotCZ

F(_) d_ I.1= cos_...._eF(x) +
4_(x,_)2. cot2a , r2:j 2=

(21a)

X

cos8 [ ( r I) f 14_ r cotaO_ F"(x) in cotO_ • _32 - - _ F(_) In (x-i) d_

0

or in an alternative form

cos_..___8 cos_...._8 [ ( • r 2) +2_r F(x) + 4_ r coteC_ F"(x) in cotC_2x

X

0

(2!b)

The unsteady part can likewise be transformed by means of the following

relation which is easily shown to hold for pointed bodies

x-r cotO_ x-r cotCg

f F_) (x-_)d_ _ / F(_) cote_, r d_
4(x._)_. Coi_a- r_'='_ 4(x,_)_ cot2_, r2'"

0 0

(22)



The right-hand side of equation (22) can now be rewritten in the form

x-r cota x-r cot_

F(E) cot 2(_ • r d_ =--cot2_ • r _ F(E) cosh -I x--c-i-dE" cot_-r
_x J(X__)2 . cot2CZ, r2'

0 0

(23)

and approximated asymptotically for small r in the integrand and in the

upper limit (Ref. 22, p. 3).

x-r cot_

- cot2(x • r _ F(E) cosh "l x-_cotf_.rdE = -

o

x

- cot2_ r _-_ F(E) in cotC_-r dE.

0

(24)

The unsteady part therefore can be put into the form

x-r cotC_

2_ cos @ =
_x-_) 2 - COt2£Z • re'

o

i_ cot2C_ . r cos @ [F'(x) In cot_ • _r _2+
2_ L 2

(25a)

x

o

or again into the alternative form which is simpler for either analytical

or numerical evaluation

x-r cotC_

iB cos 8 _ / F(_) (x-_) dE _
2_ _r j(x.E)2 . cot2a . r2,

o

(25b)

[= # cote_ • r cos @ • F'(x) in
cot(_, r

mE

x

o
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Thus, Dorrance's solution is converted into the form

_(x, r, e) = cos 0

x-r cot_

_(x-_) 2 cote_ . re3

cos 0 cos 0
2_r F(x) + 4_-- r c°t2_ [F"(x) ( In c°t(_ "r2x

(26)

x

x _ _ r cos 0 F (x) in

o

cot_. r

2x
+

x

o

Comparing equation (26) with equation (17) we find that we have

obtained the Adams-Sears solution for small frequencies. Thus, by

means of the elementary steps, equations (20) through (25), we have

bridged the two approaches of Dorrance and Adams-Sears.

CONCLUSIONS

The well-known slender-body concept [Munk, Ref. i] which is also

valid for oscillatory flow problems as shown by Garrick [3] and

Miles [4] can be improved by seeking a closer approach to the full

linearized solution.

Two such approaches have been published:

a. the theory of W. H. Dorrance which starts from the basic

doublet solution, equations (3) and (4),

b. the not-so-slender-body theory of Adams-Sears, which implies

Fourier - or Laplace - transformation techniques.

It should be mentioned that the Adams-Sears theory is the more general

theory embracing the unified treatment of low-aspect-ratio wings, wing-

body combinations, and bodies at subsonic, transonic, and supersonic speeds.
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Restricting our considerations to the problem of slowly oscillating
slender pointed bodies of revolution, we have obtained in thfs paper a
quite elementary approach by applying and extending F. Keune's techniques
for low aspect-ratio bodies at zero angle of attack. This solution,
equation (26), was found, moreover, to be consistently extractable from
Dorrance's solution and to be the low-frequency special case of the
Adams-Searssolution. Having demonstrated in this way the essential
equivalence of these two solutions, it will be obvious that the Adams-
Sears theory is the more expedient one as it is more practical to
evaluate for bodies of arbitrary meridian-profile.

?



12

.

,

.

,

.

o

7,

,

.

I0.

Ii.

12.

13.

REFERENCE S

Munk, M. M., "The Aerodynamic Forces on Airship Hulls,"

NACA Rep. 184, 1923.

Jones, R. T., "Properties of Low-Aspect-Ratio Pointed Wings at

Speeds below and above the Speed of Sound," NACA TN 1032, 1946.

Garrick, I. E., "Some Research on High-Speed Flutter," Third Anglo-

American Aeron. Conference 1951, pp. 419-446.

Miles, J. W., "On Non-Steady Motion of Slender Bodies," Aeron.

Quart., Vol. II, Nov. 1950, pp. 183-194.

Dorrance, W. H., "Nonsteady Supersonic Flow," J. Aeron. Sci. 18

(1951), pp. 501-511.

Lansing, D. L., "Velocity Potential and Forces on Oscillating

Slender Bodies of Revolution in Supersonic Flow Expanded to the

Fifth Power of the Frequency," NASA TN-D-1225, Arpil 1962.

Bond, R. B., and B. B. Packard, "Unsteady Aerodynamic Forces on a

Slender Body of Revolution in Supersonic Flow," NASA TN-D-859,

May 1961.

Zartarian, G. and H. Ashley, "Forces and Moments on Oscillating

Slender Wing-Body Combinations at Supersonic Speed AFOSR TN 57-386,

1957.

Sauer, R., "Beitrag zur aerodynamischen Theorie der Geschoss-

Pendelung," Unpublished Report LRBA 19/48 (1948).

MHnch, J., "Calculation of Supersonic Flow Past Slowly Oscillating

Bodies of Revolution by Use of Electronic Computers,"

AFOSR TN 57-673, October 1957.

Bruhn, G., '_uerkr[fte auf langsam pendelnde schlanke Rotations-

k_rper im Ueberschallflug," Zeitschrift f_r Flugwissenschaften 9

(1961), pp. 285-299.

Tobak, M., and W. R. Wehrend, "Stability Derivatives of Cones at

Supersonic Speeds," NACA TN 3788, September 1956.

Heinz, C., "UeberschallstrSmungen um langsam pendelnde Drehk@rper,

Memoires sur la Mecanique des Fluides," Publ. Scientifiques et

Techniques du Ministere de l'Air, Paris 1954, pp. 119-126.



.... 13

14.

REFERENCES(Cont'd)

Revell, J. D., "Sec0nd-Order Theory for Unsteady Supersonic Flow
Past Slender, Pointed Bodies of Revolution," J. Aerospace Sci.,
October 1960, pp. 730-740.

15. Holt, M., "A Linea_ Perturbation Method for Stability and Flutter
Calculations on Hypersonic Bodies," J. Aerospace Sci., December
1959, pp. ?87-793.

16. Hsu, P. T. and H. Ashley,_ "Introductory Study of Airloads on Blunt
Bodies Performing Lateral Oscillations," MIT Fluid Dyn. Res. Lab.,
Rep. No 59-9, November!959.

17. Labrujere, Th. E., "Determination of the Stability Derivatives of
an Oscillating Axisymmetric Fuselage in Supersonic Flow,"
NLL-TNW.13, Amsterdam1960.

18.

19.

Adams,M. C. and W. R. Sears, "Slender Body Theory-Review and
Extension," J. Aeron. Sci., Vol. 20, February 1953, pp. 85-98.

Miles, J. W., "On Nonsteady Supersonic Flow about Pointed Bodies of
Revolution," J. Aeron. Sci. 19, 208.

20. Miles, J. W., "The Potential Theory of Unsteady Supersonic Flow,"
CambridgeUniv. Press 1959.

21. Keune, F., "Reihenentwicklung des Geschwindigkeitspotentials der
linearen Unter-und Ueberschallstr_mung fur K_rper nicht mehr
kleiner Streckung," ZFW5, 1957, pp. 243-247.

22. van Dyke, M. D., "Second-Order Slender Body Theory-Axisymmetric
Flow," NASATR R-47, 1959.

r



14

APPROVAL MTP-AERO-63-28

A NOTE ON THE SOLUTION FOR THE SLOWLY OSCILLATING BODY

OF REVOLUTION IN SUPERSONIC FLOW

M. F. PLATZER

The information in this report has been reviewed for security

classification. Review of any information concerning Department of

Defense or Atomic Energy Commission programs has been made by the

MSFC Security Classification Officer. This report, in its entirety,
has been determined to be UNCLASSIFIED.

W. K. DAHM

Chief, Aerodynamics Analysis Branch

E. D. GEISSLER

Director, Aeroballistics Division



15

DISTRIBUTION

M-DIR

M-DEP-R&D

Dr. Rees

M-RP

Mr. Heller

M-AERO

Dr. Geissler

Dr. Hoelker

Mr. Horn

Dr. Speer
Mr. Dahm

Mr. Holderer

Mr. Reed

Mr. May

Mr. Rhe infur th

Mr. Ryan

Mr. Linsley

Mr. Donehoo

Mr. Sims

Mr. Struck

Dr. Krause

Dr. Adams

Mr. Platzer (_0_

M-MS-IP

M-MS-IPL (8)

M-MS-H

M-HME-P

M-PAT

Scientific and Technical Informatlon Facility

ATTN: NASA Representative (S-AK/RKT)

P. O. Box 5700

Bethesda, Maryland

(2)

r




